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Application of a renormalization group algorithm to nonequilibrium cellular automata
with one absorbing state
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We improve a recently proposed dynamically driven renormalization group algorithm for cellular automata
systems with one absorbing state, introducing spatial correlations in the expression for the transition probabili-
ties. We implement the renormalization group scheme considering three different approximations that take into
account correlations in the stationary probability distribution. The improved scheme is applied to a probabi-
listic cellular automaton already introduced in the literature.@S1063-651X~98!05206-4#

PACS number~s!: 64.60.Ak, 64.60.Ht, 02.50.Ey, 05.70.Ln
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I. INTRODUCTION

In order to study cellular automata systems displayin
second-order irreversible phase transition to an absor
state characterized by a scalar order parameter, a dynam
renormalization group~RG! algorithm@1# has been propose
recently. These cellular automata models are in the dire
percolation~DP! universality class. The method is based o
dynamically driven renormalization group~DDRG! scheme
~for a recent review about DDRG see@2#!, which has been
successfully applied to self-organized critical phenomena
sandpile models@3# and forest fire models@4#.

The basic idea introduced in@4# is to couple a real spac
RG scheme to a stationary condition that drives the
equations through the parameter space. The stationary e
tions, involving the stationary distribution, have to be a
proximated since the form of the stationary probability d
tribution is not knowna priori, as in the case of systems
equilibrium. de Oliveira and Satulovsky@1# showed, as pro-
posed in@4#, that results can be improved using more refin
approximations for the stationary probability distributio
The expression for the transition probability used in@1# con-
sists in a product of independent one-site transition pr
abilities at every step of the RG transformation.

In this work we exploit another aspect of the scheme
order to include additional correlations. In fact, correlatio
can be also introduced in the renormalization scheme if
allow the transition probability to depend upon more neig
bors. In the case of nonequilibrium models, the space
which the RG flows is the space spanned by the transi
probabilities. As we will see later, our approach broade
this space providing more degrees of freedom to the
trajectories that flow towards the fixed points.

We apply the modified RG scheme to a probabilistic c
lular automaton~PCA! with one absorbing state already in
troduced in the literature@5#. Using a block renormalization
571063-651X/98/57~6!/6289~7!/$15.00
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that properly treats the nature of the absorbing state, we
ure the value of the critical exponent of the divergence of
spatial correlation lengthn' using three different approxima
tions involving correlations among clusters of one, two, a
four neighboring sites in the lattice. Our calculations forn' ,
at small orders of approximation in the mean field sche
for the stationary distribution, give better values than t
ones reported in Ref.@1#.

The paper is organized as follows. We begin with a br
description of the model proposed in@5# and the genera
renormalization scheme. After this, we define the algorit
used in this work and present the values obtained forn' .
Finally, after mentioning the ideas involved in the simulati
technique used to study the model, we present the value
the whole set of critical exponents for the PCA obtained
means of dynamical numerical simulations and station
simulations. Our results are in well agreement with the v
ues corresponding to (111)-dimensional DP and differ con
siderably from the ones reported in Ref.@5#.

II. MODEL

The model studied in@5# is a one-dimensional cellula
automaton in which each site can be either vacants i50 or
occupied by a particles i51. At each time step, the state o
a given site will depend only on its previous state and
previous state of its nearest neighbors. The transition pr
ability T(sus8) from states85(s18 ,s28 , . . . ,sL8) to state
s5(s1 ,s2 , . . . ,sL) will be given by the product

T~sus8!5)
i 51

L

t~s i us i 218 ,s i8 ,s i 118 !, ~1!

whereL is the number of sites andt(s i us i 218 ,s i8 ,s i 118 ) is
the one-site transition probability given by the followin
6289 © 1998 The American Physical Society
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rules

t 000 001 100 101 010 011 110 11

0 1 12p 12p 1 0 1 1 1

1 0 p p 0 1 0 0 0

~2!

This probabilistic cellular automaton models a transiti
from elementary rule 4 to elementary rule 22~following
Wolfram’s nomenclature scheme! @6#. The system has two
critical points, one of them atp150 and the other atp2

'0.75. The critical point atp150 will be shown to be
trivial, in contrast to the result obtained in Ref.@5#. Conse-
quently, we will apply the RG to study the nontrivial trans
tion point. Rulet(0u000)51 implies that the vacuum state
indeed an absorbing state.

III. RENORMALIZATION SCHEME

The RG scheme proposed in@4# is a real space RG
scheme@7# in which one renormalizes the transition pro
ability T. The RG flow takes place in the space of parame
definingT. A blocking procedure transforms cells ofb sites
into one site at the new scale. In order to account for the
that the vacuum state is absorbing, a cell devoid of partic
will always renormalize into an empty site. Cells with
least one particle have been chosen to renormalize into
occupied site. Other options have been tried, but they do
preserve the existence of the absorbing state.

Let s5(s1 ,s2 , . . . ,sL) be the state of a system withL
degrees of freedom and the vectorS5(S1 ,S2 , . . . ,SL8) be
the state of the renormalized system withL85L/b degrees
of freedom, whereb is the size of the renormalization block
The conditional probability of stateS given states,R(Sus),
must satisfy

R~Sus!>0, (
S
R~Sus!51. ~3!

Given T and the probability of a states8 at time t, W(s8),
one can write the joint probability of states8 at time t and
states at n time steps laterWn(s,s8) by simply applyingT
to W(s8) n successive times

Wn~s,s8!5Tn~sus8!W~s8!. ~4!

In addition, in the stationary regime, the probability distrib
tion W(s) must satisfy

W~s!5(
s8

Tn~sus8!W~s8! ~5!

for any value ofn.
In the same way one can write these expressions at

coarse grained level. Denoting byT̃(S,S8) the probability of
occurrence of stateS8 at a given time and stateS one time
step later, the RG transformation is obtained imposing@7#
rs

ct
s

an
ot

he

W̃~S,S8!5(
s

(
s8
R~Sus!R~S8us8!Wn~s,s8!, ~6!

from which follows

W̃~S8!5(
S

W̃~S,S8!5(
s8
R~S8us8!W~s8!. ~7!

Once knowing the transition probabilities at the coa
grained scale, one can easily build the rescaled transi
matrix T̃(SuS8) as

T̃~SuS8!5
W̃~S,S8!

W̃~S8!
. ~8!

Using now Eqs.~4!, ~6!, and~7!, we obtain the final expres
sion for the renormalization equations@4#

T̃~SuS8!5

(
s

(
s8
R~Sus!R~S8us8!Tn~sus8!W~s8!

(
s8
R~S8us8!W~s8!

.

~9!

Let us note that, while this equation expresses resca
transition probabilitiesT̃ in terms of transition probabilities
at a lower scaleT, the stationary weight of each state prese
in Eq. ~9!, W(s8), is yet unknown. Contrary to the case
closed systems in thermal equilibrium, we do not knowa
priori the expression for the stationary probability distrib
tion. However, including Eq.~5!, one can get a closed set o
equations to solve at each renormalization step. The stat
arity condition ~5! is actually essential in driving the RG
equations~9! through parameter space. Equation~9!, to-
gether with a given approximation for the stationary pro
ability, provides then a well defined RG transformationT

→T̃.
In practice, Eq.~5! can hardly be solved and one mu

resort to approximations. The values of critical expone
obtained using the present RG approach are expected to
prove as these approximations improve. We have used t
different levels of approximations, in which correlation
among clusters of one, two, and four sites are conside
respectively.

In this work we will be concerned with another way
improve the RG scheme. An important point is that, in ord
to solve Eq.~9!, an assumption needs to be made on how
transition probability between statesS8 andS, T̃(SuS8), de-
pends on local transition probabilities at the coarse grai
level. This choice will determine the degree of proliferatio
that the RG will have since the form of the renormaliz
transition probability will be preserved along the RG traje
tories.

In the former approach@1#, the authors carried out th
most general RG transformation considering one-site tra
tion probabilities. By preserving the form of the renorma
ized transition probabilities, the RG trajectories are found
flow to the attractive fixed points in a five-dimensional spa
spanned by the dynamical parameters. In contrast to u
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57 6291APPLICATION OF A RENORMALIZATION GROUP . . .
RG methods in which new couplings arise at each step of
transformation, this RG procedure is not able to prolifer
the dynamical parameters since the form of the transi
probabilities is kept fixed at the coarse grained level. Ho
ever, new dynamical parameters can be considered from
very beginning if we allow the transition probabilities to d
pend upon more neighbors, i.e., introducing more corre
tions in them. This feature of the method should be co
pared with other dynamical RG procedures@7# where the
introduction of new couplings since the very beginning is
alternative way to carry out the RG transformation.

We propose, then, a form for the coarse grained transi
probability consisting of a product of independent two-s
transition probabilities instead of one-site transition pro
abilities. Denoting the position of each lattice site withi , the
new transition probability is defined at even time steps a

T̃~SuS8!5 )
k51, i 52k

L/2

t̃~Si ,Si 11uSi 218 ,Si8 ,Si 118 ,Si 128 !

~10!

and at odd time steps as

T̃~SuS8!5 )
k51, i 52k11

L/2

t̃~Si ,Si 11uSi 218 ,Si8 ,Si 118 ,Si 128 !.

~11!

Here we have used the same symbolt̃ to indicate a different
type of transition probability than the ones appearing in E
~1!. In formulas~10! and ~11! periodic boundary conditions
are assumed.

One can retrieve at any time one-site transition probab
ties knowing both two-site probabilities and the stationa
distribution. It is straightforward to show that

t̃~Si uSi 218 ,Si8 ,Si 118 !

5 (
Si 11 ,Si 128

t̃~Si ,Si 11uSi 218 ,Si8 ,Si 118 ,Si 128 !

3
W~Si 218 ,Si8 ,Si 118 ,Si 128 !

W~Si 218 ,Si8 ,Si 118 !
. ~12!

Using expressions~10! and~11! in Eq. ~9! one can imple-
ment the RG transformation. The algorithm we used is
plained in more detail in the next section.
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IV. RENORMALIZATION ALGORITHM

We have used a temporal coarse graining of two ti
steps (n52). The blocking operatorR was chosen in the
same way as in@1#, renormalizing cells of sizeb52 into one
site

R~Sus!5)
k51

L/2

R~Skus2k21 ,s2k!, ~13!

with

R~Skus2k21 ,s2k!>0 ~14!

and

(
Sk

R~Skus2k21 ,s2k!51. ~15!

In order to preserve the nature of the absorbing state,
have also requiredR to satisfy

R~0u0,0!51 ~16!

and

R~0us2k21 ,s2k!50 ~17!

whenevers2k21Þ0 or s2kÞ0.
The diagram in Fig. 1 indicates how two-site transitio

probabilities are renormalized. Indices appearing in E
~18!–~20! refer to this diagram.

Using Eqs.~9!–~11!, we can write down the expressio
relatingt to t̃, which is given by

FIG. 1. Diagram showing the blocking scheme procedure. Nu
bers correspond to the indices used in Eqs.~18!–~20!.
t̃~S1 ,S2 ,uS3 ,S4 ,S5 ,S6!5@N~S3 ,S4 ,S5 ,S6!#21 (
s1 ,s2 ,s3 ,s4 ,s11 , . . . ,s18

R~S1us1 ,s2!

3R~S2us3 ,s4!R~S3us11,s12!R~S4us13,s14!R~S5us15,s16!R~S6us17,s18!

3D~s1 ,s2 ,s3 ,s4us11, . . . ,s18!W~s11, . . . ,s18!, ~18!

where
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D~s1s2 ,s3 ,s4us11,s12,s13,s14,s15,s16,s17,s18!

5 (
s5 , . . . ,s10

t̃~s1 ,s2us5 ,s6 ,s7 ,s8!t̃~s3 ,s4us7 ,s8 ,s9 ,s10!t̃~s5 ,s6us11,s12,s13,s14!

3 t̃~s7 ,s8us13,s14,s15,s16!t̃~s9 ,s10us15,s16,s17,s18! ~19!

and

N~S3 ,S4 ,S5 ,S6!5 (
s11 , . . . ,s18

R~S3us11,s12!R~S4us13,s14!R~S5us15,s16!

3R~S6us17,s18!W~s11, . . . ,s18!. ~20!
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Since we do not knowa priori the stationary weights
W(s11, . . . ,s18), we need an approximate method to es
mate them. The simplest approximation, sometimes kno
as simple mean field approximation, consists in neglec
correlations among different sites, that is,

W~s11, . . . ,s18!5 )
i 511

18

W~s i !, ~21!

whereW(s i) is the solution of

W~s1!5 (
s2 ,s3 ,s4 ,s5 ,s6

t̃~s1s2us3s4s5s6!

3W~s2!W~s3!W~s4!W~s5!W~s6!. ~22!

Correlations, however, are actually taken into accoun
the geometrical aspects of the blocking procedure, leadin
nonclassical exponents. Better approximations can be
implemented~as a reference see@8#!. We used one-, two-
and four-site approximations.

Equations~18!–~20! involve each transition probability
Being so many terms, we are prevented from an analyt
determination of the fixed points of the transformation.
we performed our search numerically, using initial values
the transition probabilities that correspond to the origi
model @Eq. ~2!#.

As a technical remark, let us say that in each iteration
the RG and given a set of parameters$t̃%, we need to solve
Eq. ~22! ~or its analog for two- and four-site approximation!
before the next RG step. We have done this by iterating
equation until reaching convergence.

V. RG RESULTS

The behavior of the RG equations can be described
follows. For values ofp that are small enough, the set
transition probabilities flows towards an attractive fixed po
characterized by a lattice devoid of particles. Increasingp
above a critical valuepcr , the flow is driven to another at
tractive fixed point, consisting of a lattice full of particle
The value ofpcr , for each level of approximation used, ca
be found in Eq.~23!. Starting around the critical values, th
representative point of the parameter set spends a long
near an unstable fixed point before leaving towards one
-
n
g
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to
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o
r
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e
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the two attractive fixed points. A projection of the RG flo
along two specific transition probabilities is shown in Fig.

We have found one relevant parameter. Since we are o
dealing with stationary properties of the model, it is reaso
able to assume that this parameter is associated with th
vergence of the spatial correlation length and not the tem
ral correlation length@1#. In order to calculate the eigenvalu
L associated with that parameter, we have to find the lin
region of the RG transformation.

Let us take a trajectory passing close enough to the
stable point and construct a sequence of numbers consi
in the distance between two successive points along that
jectory. Now let us callr the ratio between two consecutiv
numbers in that sequence. In the portion of the traject
corresponding to the linear region of the RG transformat
~around the unstable fixed point!, one expects to see tw
plateaus in the values ofr .

The first plateau corresponds to a trivial parameter, wh
the value ofr at the second plateau corresponds to the eig
value L of the RG transformation. Figure 3 shows an e
ample of one of such curves for the simple mean field
proximation. So, figuring the eigenvalueL associated with
the relevant parameter, we getn'5 ln2/lnL. The value mea-
sured numerically for the plot in Fig. 3~simple mean field
approximation! is n'50.96560.001.

To the best of our knowledge, the best value ofn' is

FIG. 2. Two-dimensional projection of the RG flow alongx

5 t̃(00u0010) andy5 t̃(00u1000) for the simple mean field ap
proximation.
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n'51.097260.0005@10# and the most accurate value for th
critical point p2, obtained by dynamical numerical simula
tions ~see the following sections!, is p2'0.7513. Although
our value of the critical exponentn' is still inaccurate, it is
worth at this point comparing it with the one obtained usi
the same approximation~the simple mean field! in @1#. In
that work the authors obtainedn'50.93160.005, so that our
result is a better approximation for the actualn' . Our
scheme is able to take into account correlations in a m
accurate way than the original one.

By increasing the order of the approximation, results i
prove, as shown in Eq.~23!. The value we found using th
two-site approximation wasn'51.01360.001, while the
value found in the four-site approximation wasn'51.015
60.001, which is closer to the actual one. Below we sh
the critical valuepcr for the three approximations, as well a
the corresponding value ofL andn' :

Approximation pcr L n'

1 0.639825 2.050 0.96360.001

2 0.681490 1.982 1.01360.001

4 0.695017 1.979 1.01560.001

~23!

It should be noted that the present RG scheme lead
fairly good values for the exponentn' already within lower-
order mean field approximations. This fact indicates that
introduction of new correlations in the transition probab
ties plays a relevant role within the lower-order mean fi
approaches. For mean field approximations of order hig
than 2, the convergence of the scheme becomes slower

Reconsidering the ideas that led us to Eqs.~10! and ~11!
for the transition probabilities, one may think of obtainin
better approximations forn' by allowing the transition prob-
abilities to depend upon even more neighboring lattice si
While this idea is clearly right, one can presently not ov
come, in practice, the huge amount of computer time nee
to obtain values that are accurate enough.

FIG. 3. Ratior of successive distances among two consecu
points for one of the trajectories shown in Fig. 2. Thex coordinate
denotes the precedence of each point along the curve.
re
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to
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VI. SIMULATION TECHNIQUE

A. Spreading analysis

The basic rules governing the dynamical evolution of t
system have been formulated in Sec. II. As in ordinary c
lular automata, all lattice sites are updated simultaneou
Simulations were performed on lattices of sizeL510 000,
taking periodic boundary conditions. We briefly discuss h
the scaling theory for directed percolation that supports
spreading analysis. A detailed treatment can be found e
where@9#.

It should be stressed that forL finite, the steady state o
the system is metastable since, due to fluctuations of
stochastic process, there is always a finite probability for
system to become empty. This probability increases w
approaching the critical point. Consequently, it is very dif
cult to calculate critical points and critical exponents
means of numerical simulations. Furthermore, since the t
sition between the stationary regime and the absorbing s
is second order, a mean field treatment is not adequ
These shortcomings can be avoided by evaluating crit
exponents related to the dynamic critical behavior of the s
tem. For this purpose one starts, att50, with a particle at the
center of the lattice otherwise empty, i.e., a configurat
very close to the absorbing state. Then the following qua
ties are computed:~i! the survival probabilityP(t), that is,
the probability that at least a particle is still in the system
time t, ~ii ! the average number of particlesN(t), and~iii ! the
average mean distanceR(t) over which particles have
spread. Averages are taken over 53104 samples and runs ar
performed up tot5104. Finite size effects are avoided sinc
the epidemic disk never reaches the edge of the lattice du
the simulation. Close to the critical point and for lon
enough times, the following scaling laws should hold@9#:

P~ t !}t2dF$Dt1/n i%, ~24!

N~ t !}thf$Dt1/n i%, ~25!

R~ t !}tz/2J$Dt1/n i%, ~26!

whereD5up2pcu, j t5D2n i gives the temporal correlation
length close topc , n i is the correlation length exponen
~time direction!, F, f, andJ are suitable scaling functions
andd, h, andz are critical exponents. In the absorbing sta
P(t) and N(t) are expected to decay exponentially sin
correlations are short ranged. This can only happen
f(D,t)}$Dt1/n i%2hn iexp(2Dnit) for t→`. Therefore, one
has from Eq.~25!

N~ t !}D2hn iexp~2Dn it !, t→`. ~27!

At criticality, one expects that log-log plots ofP(t), N(t),
andR(t) would give straight lines, while upward and down
ward deviations would occur even slightly off criticality
This behavior would allow a precise determination of t
critical point and the critical exponentsd, h, andz. It should
be noted that by means of Eq.~27! it would be also possible
to calculaten i .

e
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B. Finite size scaling analysis

As in standard second-order phase transitions it is
sumed that in the supercritical region and close to the crit
point, the system displays spatial correlations character
by a typical length scalejs , which diverges at criticality
according to

js}D2n', D→0, ~28!

where n' is the correlation length exponent in the spat
direction. The natural order parameter of the model is
density of particlesr, which at criticality depends on th
system sizeL andD as

r~p,L !5L2b/n' f ~DL1/n'!, ~29!

where f is a suitable scaling function andb is the order
parameter critical exponent. For small positiveD and L
→`, f (x) should have the form

f ~x!}xb ~30!

in order to recover the well-known critical behavior of th
order parameter in the thermodynamic limit

r}Db. ~31!

VII. SIMULATION RESULTS

Before presenting the simulation results we will brie
discuss the critical point atp50. If we start att50 with a
random initial configuration of densityr050.5, the station-
ary density of the system isr'1/8. It should be noted that a
p50 the system reaches a static stationary state in one
step@see the evolution rules in Eq.~2!#. Taking into account
this observation, the stationary density of the system can
obtained as follows. It is clear from the evolution rules th
the probability of having an occupied site att51 is equal to
the probability of finding an occupied site surrounded
empty sites att50. Since there are no correlations in th
s-
al
ed

l
e

e

be
t

initial state, the stationary density of the system atp50 can
be determined as

r5r0~12r0!2. ~32!

Then, since we usedr050.5, the expected value of the st
tionary density isr51/8.

For arbitrary small values ofp, the stationary state is th
vacuum state@5#. We now consider the relaxation process
the vacuum state. We take as starting configuration (t50)
any of the static stationary states atp50. Then we follow
the evolution of the density forp close to zero. It is clear
from the evolution rules that after a particle is created, t
particles are removed from the system at the next time s
Then the system stays in another static state until the n
creation process occurs. Suppose that a creation process
pens at positionxi . If no new particle is created in the neigh
borhood ofxi at the next time step, correlations cannot
generated@see the evolution rules in Eq.~2!#. The probability
of two consecutive creation processes isp2,p. Then the
system cannot develop long-range correlations and a m
field analysis should be appropriate. Forp close to zero it is
possible to consider the creation process as a crea
induced annihilation process. We then have

dr/dt52pr. ~33!

Consequently,p50 is a trivial critical point since the relax
ation time behaves ast5(1/p)1. This result is in disagree
ment with the one reported in Ref.@5#, probably due to a
poor statistics of the simulation data.

In the following, the results of the epidemics analysis
p5p2 are presented. We measure the time evolution ofP(t),
N(t), andR(t) for different values of the parameterp. Log-
log plots of these quantities as a function of time are strai
lines at the phase transition and show curvature away f
the transition. It is important to mention that the epidem
analysis is a very sensitive method since it is possible
distinguish among supercritical and subcritical behavior
p values that differ in the fourth decimal. Our best estimati
of the critical point isp250.751360.0002 and the dynami
e,
FIG. 4. Data collapse on a universal curv
according to Eq.~29!.
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cal critical exponents ared50.16260.0004, h50.304
60.0005, andz/250.64360.0007. It should be remarke
that the error bars merely indicate the statistical error
tained from regressions. The values of the dynamical ex
nents are in good agreement with those correspondin
directed percolation in 111 dimensions, as it was expecte

It is possible to calculate the exponentn i from the analy-
sis of the subcritical behavior@see Eq.~27!#. In fact, the
decay constantl5j t

21 governing the long-time behavior o
N(t) behaves according to

l5j t
215Dn i, ~34!

so, if p2 is known, we can calculatel for different values of
D. Then a log-log plot ofl vs D allows us to evaluate the
exponentn i . This analysis gives an exponentn i51.738
60.002, which is quite close to the valuen i51.73 corre-
sponding to~111!-dimensional DP@10#. It should be pointed
out that our value ofn i sharply differs from the one reporte
in Ref. @5# (n i'1.087). The error in the last value of th
exponentn i is due to the fact that it was calculated takin
into account not only subcritical but also supercritical curv

We have also calculated the order parameter critical
ponent measuring the densityr as a function ofD in the
supercritical regime@see Eq.~31!#. We obtain b50.277
60.002, which is once again very close tob5199/720, cor-
responding to (111)-dimensional DP@10#. It should be
mentioned that the reported value of the order param
critical exponent in Ref.@5# is b'0.32, which differs around
16% from the theoretical value. This difference may be d
again to the poor statistics of the data.

We finally present the finite size scaling analysis. Figur
shows a log-log plot ofrLb/n' vs DL1/n' for different values
of p and lattice sizesL, where we have usedb5199/720 and
n'51.0972@10# corresponding to (111)-dimensional DP.
We obtain an excellent collapse of the data on an unive
curve, as it is predicted by Eq.~29!.

Right before submitting this manuscript for publicatio
the author of Ref.@5# improved some of his previous resul
@11#. Although no new results are reported for the triv
tt
-
o-
to

.
x-

er

e

4

al

l

critical point p1, the conclusions concerning the universal
class of the model are in complete agreement with the o
found in this work.

VIII. CONCLUSIONS

We have introduced a renormalization group algorith
for probabilistic cellular automata with one absorbing sta
The scheme introduces correlations in the RG procedure
allowing the transition probabilities to depend upon tw
neighboring lattice sites. Three different approximations
the stationary probability distribution have been use
namely, the simple mean field approximation, the pair me
field approximation, and the four-site mean field approxim
tion.

The present RG scheme leads to fairly good values forn'

even within mean field approximations of low order. Th
result shows that the introduction of spatial correlations
the transition probabilities is the relevant reason for the
provement of the results.

The critical exponentsn' , especially for low-order ap-
proximations, are better than the ones obtained with sche
that make use of an independent product of one-site tra
tion probabilities@1,12#. Using very simple arguments, w
have shown thatp150 is a trivial critical point since the
time relaxation constant behaves ast5(1/p)1. This behavior
differs from the one reported in Ref.@5# @t5(1/p)0.86#.

We have also obtained, by means of numerical simu
tions, the critical pointp5p2 and the whole set of critica
exponents. The value of the critical pointp250.7513
60.0002 is in agreement with@5#. However, we found very
different values for exponentsn i and b. Our values of the
exponents atp5p2 are in good agreement with those corr
sponding to (111)-dimensional DP, as it was expecte
since there is only one absorbing state for the system@13,14#.
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